Comparison of keyword spotting approaches for informal continuous speech
نویسندگان
چکیده
This paper describes several approaches to keyword spotting (KWS) for informal continuous speech. We compare acoustic keyword spotting, spotting in word lattices generated by large vocabulary continuous speech recognition and a hybrid approach making use of phoneme lattices generated by a phoneme recognizer. The systems are compared on carefully defined test data extracted from ICSI meeting database. The acoustic and phoneme-lattice based KWS are based on a phoneme recognizer making use of temporal-pattern (TRAP) feature extraction and posterior estimation using neural nets. We show its superiority over traditional HMM/GMM systems. The advantages and drawbacks of different approaches are discussed.
منابع مشابه
Phoneme Based Acoustics Keyword Spotting in Informal Continuous Speech
This paper describes several ways of keywords spotting (KWS), based on Gaussian mixture (GM) hidden Markov modelling (HMM). Context-independent and dependent phoneme models are used in our system. The system was trained and evaluated on informal continuous speech. We used different complexities of KWS recognition networks and different types of phoneme models. The impact of these parameters on ...
متن کاملComparison of keyword spotting methods for searching in speech
This paper presents and discusses keyword spotting methods for searching in speech. In contrast with searching in text, the searching in speech or generally in multimedia data still represents a challenge. The aim of the paper is to present a keyword spotting (KWS) method based on a large vocabulary continuous speech recognition (LVCSR) system, based on phonetics decoder, and keyword spotting u...
متن کاملKeyword spotting for highly inflectional languages
This paper presents our new keyword spotting system taking advantage of both the filler model and the confidence measure approaches. The novelty is in a non-standard connection of the filler and the keyword models together with introduction of a new confidence measure based on a keyword normalized score. In detail the paper deals with a decision block. Two methods are introduced. The first is b...
متن کاملSmall-footprint Keyword Spotting Using Deep Neural Network and Connectionist Temporal Classifier
Mainly for the sake of solving the lack of keyword-specific data, we propose one Keyword Spotting (KWS) system using Deep Neural Network (DNN) and Connectionist Temporal Classifier (CTC) on power-constrained small-footprint mobile devices, taking full advantage of general corpus from continuous speech recognition which is of great amount. DNN is to directly predict the posterior of phoneme unit...
متن کاملNoise Robust Keyword Spotting Using Deep Neural Networks For Embedded Platforms
The recent development of embedded platforms along with spectacular growth in communication networking technologies is driving the Internet of things to thrive. More complex tasks are now possible to operate in small devices such as speech recognition and keyword spotting which are in great demand. Traditional voice recognition approaches are already being used in several embedded applications,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005